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Abstract

The power spectrum of potential field data in a horizontal observation plane decays the faster
the greater the depth to source. This property is often utilized for estimating the depth of
sedimentary basins. Some popular methods of depth estimation by spectral analysis assume
that'the depth factor dominates the shape of the log radially averaged power spectrum.
However, the power spectrum can also be dominated by the statistical properties of the source
. distributions, which can be described by the concept of scaling geology. We derive a model
power spectrum consisting of a depth term, a term accounting for scaling properties of the
source distribution and a noise term. Interpreting power spectra with this model we obtain
depth values which differ significantly from the depth values derived by earlier methods of
spectral analysis. In particular, there is a certain trade-off between the statistical properties
of the source distribution and the depth to source. Hence, a reliable estimate of the basin
depth may require a priori information on the individual statistical properties of the source

distribution in a particular basement.
Introduction

Potential fields look smoother the
greater the distance between the observation
plane and the sources of the field. The
reason is that short wavelength anomalies
can onty be resolved at a close distance.
Hence, a potential fietd originating from the
crystalline basement of a deep sedimenfary

- basin is domingted:by long wavelength
--anomalies. Thi¥ observation can be
- quantified by regarding the pewer spectrum

of the data. |

A method which estimates the depth
to source from the radially averaged power
spectrum of aeromagnetic data was first
proposed by Spector and Grant (1970). This
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method was developed further by Naidu.

(1972) and by Hahn et al (1976). Spectral

analysis has also been applied to” gravity
data. These methods of spectral analysis
have in common that they assume the depth
to source to dominate the shape of the log
radially averaged power spectrum. This is
equivalent to assuming a constant power

~spectrum at source level."

%

However, to assume a constant
power spectrum at source level may not -
always be appropriate. Pilkington and
Todoeschuck (1993) showed on well-logs
that the susceptibility distribution in the
Earth’s crust is scaling. Scaling
distributions have a power spectrum which
is proportional to some power y of the
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wavenumber f, i.e., P(f) < f~ ¥ (Mandelbrot,

1983). Scaling susceptibility and density -

“distributions cause magnetic and gravity
fields which are again scaling (Pilkington
and Todoeschuck, 1993: Maus and Dimri,
1994). In this paper we want to demonstrate
that taking into account the scaling
properties of potential fields leads to more
reliable estimates for the depth of
sedlmentary basins. *

Théory

Up and downward continuation. Say, we
have measured the anomaly of the total
intensity of the magnetic field in a
horizontal observation plane at
z = h = constant. We can estimate the
two-dimensional (2D) power spectrum
Pk, ky) from the data (Spector and Grant,

1970). Let us assume that the statistical

distribution of the source magnetization in
the ground is horizontally isotropic. Further,
let us assume that the principal direction of
magnetization is parallel or antiparallel to
the normal field. Then the 2D power
spectrum can be reduced to the pole and the
resulting 2D power spectrum is expected to
be isotropic. For an isotropic power
spectrum we can consider the radial average
P, (r)defined by

T
P, (r) = rﬁ(rsine,rcose)de
0

Let us assume that there exists a
definite upper edge of the sources as
illustrated in Fig.1. This magnetic basement
may be the crystalline basement of a
sedimentary basin with virtually
nonmagnetic basin fill or simply the surface
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Fig. 1: We use a szmple model for the
estimation of basin depths. Nonmagnetic
sediments covering a crystalline magnetic
basement. The observation plane is located in
a certain height above the Earth’s surface.
The coordinate system is placed in such a way
that z = 0 at the basement of the basin.
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Fig. 2 ! This figure demonstrates the use of
the Spector and Grant method. The slope of
the power spectrum is assumed to be

proportional to the depth of magnetic

interfaces. Consequently, the depth values can
be derived directly from the slope of the power

spectrum (after Connard et al., 1983).
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of the Earth. If we place the coordinate
system in.such a way that z = 0 at the top
of the sources then the power spectrum
Ph(r) in the observation plane can be
related to the power spectrum Po(r) at the
top of the sources by

Py(r)=eP (1)

Equation (2) is the well known relationship

for upward and downward continuation of

potential fields in a medium free of sources.

In equatlon (2) usually only Ph(r) is
known, which can be estimated from the
potentlal field data measured in the
observation plane. If we also had an idea
about P o(r) we could calculate the factor

~2hr from (2) and thus estimate the depth
to the top of the sources. Hence, this
relationship is of great practical importance.

Spector and Grant’s method. The easiest
way to make use of equation (2) is to assume
lTo(r) = constant. This was first proposed
by Spector and Grant (1970). Taking the
logarithm of equation (2) we then get

In (P,(r,0))=-2hr+c

and thus the slope of the log power spectrum
is directly proportional to the depth to
source. The Spector and Grant method is
demonstrated in Fig. 2. To derive to source
directly from the slope of the log power
spectrum of magnetic and gravity data is
very convenient and enjoys continuing
popularity as can be seen from a number of
recent publications (e.g. Ofoegbu and Hein,
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1991, Cowan and Cowan, 1993;

Hildenbrand et al., 1993; Pawlowski, 1994).
Unfortunately, the depth values derived by
this method are not always very reliable.
Fig.3 for example, shows the basement
topography of the Northern German Basin
derived by the Spector and Grant method
as solid lines (after Hahn et al., 1976),
overlaid with the depth values derived
by other geophysical methods as dashed

lines (after Ziegler, 1982). A significant

discrepancy is observed between the
two maps. Possibly, the assumption of

P o(t) = constant is unrealistic in this case.

Studying P,. To obtain a reliable estimate
of the depth to source using equation (2)
requires a realistic assumption on the shape
of the power spectrum directly above the
sources, T’Z(r). We will now regard an
example from Hawaii where the ground
consists of highly magnetic basaltic lava.
Here, the top of the sources is obviously
identical with the surface of the Earth. The
radially averaged power spectrum P._ o(r) at

_surface level is displayed in fig. 4 in smgle
logarithmic scale. The log power spectrum

is not constant but decays exponentially.
Plotting the curve in double log scale (Fig.5)
yields a straight line, hence

In (P,(r)
@,(r)

-ylnr + &

ke

where &k and y are constants.

The power spectrum defined by
equation (4) is the power spectrum of a
scaling noise (Mandelbrot, 1983). The
constant y is called the scaling exponent of
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Fig.3: Isoline map of the basement topography derived by Hahn et al, (1976) by the

Spector and Grant method for the NW-German Basin. The dashed lines indicates
the correct basement depths (Ziegler, 1982) for this area. A significant discrepancy
is observed between the two maps.
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the scaling noise. Pilkington and
Todoeschuck (1993) observed that the
susceptibility distribution in the Earth’s
crust is scaling. Further they discovered that
a halfspace of scaling sources leads to an

anomaly of the magnetic field at source
level which is again scaling in the sense of -

equation (4). A similar relationship also
holds for gravity data (Maus and Dimri,
1994). Combining equations (2) and (4) we
receive a power spectrum

P (r) = ke “2hr p -8

model

Which is useful for understanding the shape
of the power spectra of potential field data.

Applications

A power spectrum of aeromagnetic
data of a sedimentary basin with essentially
nonmagnetic basin fill is displayed in Fig.6.
The depth of the basin is known to be around
1400m. Together with the flight altitude of
300m the correct depth to source is 1700m.

The solid lines indicate model power
spectra defined by equation (5) for different
values of the scaling exponent y. The depth
to source 4 and the constant & have been
chosen in such a way that an optimum fit of
" the model to the observed power spectrum
at low wavenumbers is achieved in a least
squares sense.

We notice that the model power
spectra do not explain the observed powers
at high wavenumbers satisfactorily. The
observed powers at high wavenumbers are
higher than the model powers. This can be
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explained by the presence of high frequency
noise. Some of this noise may also be
attributed to a non-negligible magnetization
of the sediments. The presence of high
frequency noise is a well known problem
which is usually overcome by cutting the
power spectrum and discarding the high
wavenumber portion as noise (Spector and -
Grant, 1970; Hahn et al., 1976).

A refined model. Another possibility is to
extend the model power spectrum by
including a term for the noise. Mandelbrot
(1983) observed that noises are usually
scaling. Hence a term k,r"'” may be
appropriate to model the noise. Assuming
that the noise is statistically independent of
the signal we can add the noise term to the
model power spectrum, resulting in a
refined model power spectrum

Predefined (r) =ke “2hrp 4 K, P -,

where k, is the intensity and y,, is the scaling
exponent of the noise.

Before applying this refined model,
a second observation is made from Fig.6.
We can see that there is a certain trade-off
between higher values of the depth % to the
top of the sources and lower values of y.
Hence, a reliable estimation of the depth to
source appears to be impossible if both
h and y are unknown. This problem cannot
be overcome by using a refined power
spectrum such as (6). It appears, rather,
that this is a fundamental problem of
the method: To obtain a reliable depth
estimate, the statistical properties of the
source distribution, i.e. the scaling exponent
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Fig. 4 : Radially averaged power spectrum
of aeromagnetic data of Hawaii continued
downward to ground level in single
logarithmic scale (data after Hildenbrand et
al., 1993)
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Fig. 5 . Power Spectrum of Fig.4 in double
logarithmic scale. The linear shape of this
power spectrum indicates scaling properties
of the field immediately above the sources.
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of the source magnetization, has to be
known.

Including a priori information on. Let us
recall that y is the scaling exponent of the
field immediately above the sources.
Gregotski et al.(1991) have analyzed
aecromagnetic data of the North American
continent and found a mean scaling
exponent of y= 3. Using this value as an
estimate for the scaling exponent of the
field caused by the basement in the
example of Fig.6, we receive an optimum
value of A = 1050m minus 300m for the
flight altitude as possible depth of the
basin.

The estimate of the basin depth can
be improved if we find an area with
outcropping basement of presumably
similar lithology adjacent to the basin. In
this case we can estimate y from that area.
This procedure is demonstrated in Fig.7.
The upper curve (a) is the power spectrum
of an area next to the basin. Here, the
optimum fit with & = flight altitude is
obtained for y =2.2. Using this information
in our refined model, we obtain a depth of
t = 1640m, a signal to noise ratio of
k/k,= 177 and y, = 3.3 as a best fit of the
refined model power spectrum to power
spectrum (b). This depth value is quite close
to the cotrect depth value of approximately
1700m. Hence, it seems possible to find the
depth of a sedimentary basin, using a priori
information on the scaling exponent of the
field caused by the basement.

Results and Discussion

Downward continuation of potential
fields was discussed as a means of
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Fig. 6 : Power spectrum of aeromagnetic data
over a sedimentary basin (data from
Pilkington et al., 1994). The correct depth to
source is approximately 1700 m. The solid
lines indicate the best fit of the model power
spectrum in a least squares sense for some
selected values of y . For y = 3.8 the best
overall fit obtained, y = 3.0 is the mean value
of the scaling exponent for aeromagnetic data
derived by Gregotski et al.(1991) andy = 0
corresponds to the Spector and Grant method.
The smaller the values we assume for v, the
greater the estimated depth to source h.

estimating the depth of sedimentary basins.
To obtain the correct basin depth the
statistical properties of the field
immediately above the basement have to be
known. These statistical properties can be
quantified by the concept of scaling noises.
The individual shape of the power spectrum
of the field caused by a particular basement
is then characterized by a single parameter,
namely the scaling exponent of the field
caused by this particular basement.
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Fig. 7 : Power spectrum of Fig.6 labeled as
(b) together with the power spectrum for an
area with outcropping basement (a). With the
optimum value of the scaling exponent
obtained from power spectrum (a), we can
estimate the basin depth from power spectrum
(b) using the refined model defined by equation
(6), assuming identical statistical properties
of the magnetic field caused by the basement.

It turns to be difficult (may be even
impossible) to obtain the scaling exponent
of the basement as well as the basin depth
from one and the same power spectrum
since there is a certain trade-off between
scaling properties of the field and the depth
to source. To estimate the depth to the
basement, a priori information on the
scaling exponent of this particular basement
may be required. Assuming that a
characteristic value of the scaling exponent
can be attributed to a certain basement
lithology, we have estimated the scaling
exponent from an area adjacent to the basin
with outcropping basement of presumably
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similar lithology. This procedure yielded the
correct depth of the basin which had been
-established by other geophysical methods.

The method implicitly assumes that
a particular basement lithology causes a
potential field with a characteristic value of
the scaling exponent. Scaling exponents
derived from aeromagnetic data in the area
of the German Continental Deep Drilling
"Project (KTB) support this assumption
(Maus and Dimri, 1995). However, further
studies will have to confirm that
characteristic values of the scaling exponent
can be associated with certain basement
lithologies and show, whether the scaling
exponent remains constant over a large area
of a outcropping basement.
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