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SUMMARY

The Earth’s crust is magnetized down to the Curie-temperature depth at about 10 to
50 km. This limited depth extent of the crustal magnetization is discernible in the
power spectra of magnetic maps of South Africa and Central Asia. At short wavelengths,
the power increases as rapidly towards longer wavelengths as expected for a self-similar
magnetized crust with unlimited depth extent. Above wavelengths of about 100 km the
power starts increasing less rapidly, indicating the absence of deep-seated sources. To
quantify this effect we derive the theoretical power spectrum due to a slab carved out
of a self-similar magnetization distribution. This model power spectrum matches the
power spectra of South Africa and Central Asia for a self-similarity parameter of
f =4 and Curie temperature depths of 15 to 20 km.
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INTRODUCTION

Ferrimagnetic minerals become paramagnetic (i.e. essentially
non-magnetic) above their individual Curie temperature. Low-
titanium titanomagnetite is likely to be the dominant source
of the magnetic field in the lower continental crust (Schlinger
1985; Frost & Shive 1986). This mineral has Curie temperatures
of 575°-600 °C (Schlinger 1985; Frost & Shive 1986; Wasilewski
& Mayhew 1992), which corresponds to depths in the range
of 10-50 km. Beneath this Curie-temperature depth the litho-
sphere is virtually non-magnetic. Furthermore, there is con-
siderable petrological evidence from xenoliths that the Moho
is also a magnetic boundary (Wasilewski, Thomas & Mayhew
1979; Mayhew, Johnson & Wasilewski 1985). While total
magnetization levels can reach up to 100 A m™~* in mafic lower-
crustal xenoliths, unaltered upper-mantle ultramafics have
low magnetizations (Wasilewski & Mayhew 1992). In the
following we will therefore use the more general term depth
to bottom (DTB), leaving open whether the bottom is in fact
a petrological or a temperature boundary.

Owing to the limited depth extent of the crustal mag-
netization, magnetic anomalies at the Earth’s surface are
damped at long wavelengths. The lack of long-wavelength
power has been quantified in numerous studies to derive the
DTB from magnetic surveys (Vacquier & Affleck 1941,
Bhattacharyya & Leu 1975; Shuey et al. 1977; Connard,
Couch & Gemperle 1983; Negi, Agrawal & Rao 1983; Blakely
1988; Herzfeld & Brodscholl 1994; Okubo et al. 1985; Okubo
& Matsunaga 1994). Most of these investigations were based
on the explicit or implicit assumption that long-wavelength
anomalies necessarily originate only from deep-seated sources.
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If this were really the case, the limited depth extent of the
crustal magnetization would already be visible in magnetic
maps covering less than 100 km x 100 km. Indeed, Okubo
et al. (1985) derived a detailed Curie isotherm map of the
Island of Kyushu using 60 km x 90 km windows. Blakely
(1995) recommends a minimum survey dimension of 50 km
and 160km for a DTB of up to 10km and up to 50 km,
respectively. On the other hand, Serson & Hannaford (1957)
analysed aeromagnetic profiles extending over several thousand
kilometres and failed to see the DTB because the auto-
correlation did not taper off to zero, even for lags of several
hundred kilometres.

Any method of DTB estimation requires a model for the
magnetization distribution in the crust. Earlier models often
failed to account for shallow long-wavelength variations in the
magnetization. These variations are caused by regional geo-
logical features, such as extensive sedimentary basins, or con-
trasts between continental and oceanic lithosphere. One can
argue that, on average, magnetization contrasts at long scales
are similar to the ones observed at small scales. This idea leads
to the powerful concept of self-similarity (Kolmogorov 1941;
Mandelbrot 1983), which is consistent with susceptibility logs
(Pilkington & Todoeschuck 1993; Maus & Dimri 1995),
susceptibility surveys (Pilkington & Todoeschuck 1995) and
magnetic maps (Gregotski, Jensen & Arkani-Hamed 1991;
Pilkington & Todoeschuck 1993; Maus & Dimri 1995, 1996).

Here we derive a spectral density model for the anomaly of
the total intensity of the magnetic field. The model accounts
for the self-similarity as well as the limited depth extent of the
crustal magnetization. We apply this model to investigate the
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expected difference in the spectral density of magnetic maps
for different DTBs.

MODEL

The potential of the magnetic field in a horizontal observation
plane at a height z above a slab with thickness ¢ of magnetic
sources has been given by Naidu (1968, eq. 43, with d; = z and
d2 =Zz+ t):

Y(x, v, z) = % f J J J(u, v, W)+ (ue, + ve, + ise,)

exp(—sz)[exp(—st —iwt) — 1]
X is(s + iw)

x exp(iux + ivy) dudvdw, n)

where J(u,v,w) is a spectral representation (e.g. Fourier
transform) of the vector magnetization, e,, e, and e, are
the unit vectors of the coordinate system, s=(u, v)T is the
horizontal wavevector and s =|s|.

Assuming that any remanent magnetization is either parallel
or antiparallel to the geomagnetic field N = (n,, n,, n,)T, we
can describe the magnetization by a virtual scalar susceptibility
function x(x, y, z) as J(x, y, z) = x(x, y, zN. Owing to the lin-
earity of the spectral representation, ¥(u, v, w)= 7(u, v, w)N,
and

e z)=%f J f (s -+ o, ism, )70, 0, W)

exp(—sz)[exp(—st —iwt) — 1]
X
is(s + iw)
x exp(iux + wy) dudvdw . 2)

Considering the anomaly of the total intensity of the
magnetic field T,(x, y, z), which is related to the potential by
T, =N/IN| V¥, gives

T2 = 5 J f f iuns+ ony + sn. P 7, v, )

exp(—sz)[exp(—st —iwt) — 1]
x is(s -+ iw)

x exp(iux + ivy) dudvdw . (3)
Then a 2-D spectral representation of the magnetic field is
given by

T.(u,v,2z)= % i(un, + vn, + isn,)* exp(—sz)

J‘“’ [exp(—st —iwt) — 1]
x

o T, v, w) is(s -+ iw) dw. (4)

Let us denote the horizontal component of the geomagnetic
field by H and the angle between the horizontal projection H
of the field and the horizontal wavevector s by 8. Then

T, v, 2)= é%(n, + iH cos 0)%s exp(—sz)

j“ [1—exp(—st —iwt)]
%

e 2o, v, w) (s + iw) dw. ©)

The spectral representation T,(u, v, z) of the magnetic field

can be regarded as a convolution of the spectral representation
f(u, v, w) of the susceptibility distribution with a function g(w):

T.(u, v, 2)= J‘” p(W)i(u, v, w) dw, (6)
where
plw)= fl%l (1, + iH cos 0)s exp(—sz) [1- exg(;s;)— iwt)]

(7)

Up to this point one could think of the spectral represen-
tations as Fourier transforms on the basis of the usual Riemann
integral. Taking this view, T,(u, v, z) and 7(u, v, w) are deter-
ministic functions, obtained by an integral transform from the
space-domain magnetic field T,(x, y, z) and the space-domain
susceptibility distribution x(x, y, z). In the following, we shall
take a stochastic point of view. Then T,(x, y, z) and x(x, y, 2)
are regarded as the outcome of some kind of random
experiment. Their spectral representations are given by
Fourier-Stieltjes integrals (Yaglom 1986) in the following sense:

R(x) = jw exp(iux)Z(du), (8)

—co

where R(x) is the random function in the space domain and
Z(du) is a complex random measure determined for any interval
du and having the properties

(1) <Z(du)) =0 for all intervals du;

(2) <Z(du)Z(du')> =0 for non-intersecting intervals du
and du’;

(3) Z(duvdu')= Z(du) + Z(dv') for non-intersecting intervals
du and du'.

The spectral density f(u), if it exists, is related to Z(du) by

(Z(du)Z(dw)y = f(u) du. 9)
Finally,
LZ[@AwWZ(du')) = 6(u — u') f(u) dudy’ . (10)

Here, <.) stands for the expected value and 6(u) is the Dirac
delta-function.
In this notation, eq. (6) becomes

©

T.(du, dv, z) = J‘ o(W)i(du, dv, dw), (11)

-

where T,(du, dv, z) and §(du, dv, dw) are two random measures,
corresponding to Z(du) in eq.(8). An application of the
Fourier—Stieltjes integral to a related problem can be found in
Maus & Dimri (1996). To derive an expression for the spectral
density of the magnetic field, we multiply both sides of (11)
with their complex conjugates and make use of the properties
(9) and (10):

T.(du, dv, 2) T, (du, dv, 2)

= Jw Jw pW)F(du, dv, dw)ypw)i(du, dv, dw"), (12)

—wJ—w
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Frlu, v, z) dudv )
= on Jw pWp(W)d(w — w') f(u, v, w) dudvdwdw’,  (13)

el

fT(u>U’ Z) = J‘ (ﬂ(W)mfx(% v, W) dW > (14)

—

where fr(u, v, z) is the spectral density of the magnetic field
and f,(u,v,w) is the spectral density of the susceptibility
distribution within the slab. Recalling the definition of ¢(w)
from eq. (7),

2
p(wWp(w) = Z,%(n’ + iH cos 0)*(n, + iH cos 8)*s? exp(—2sz)
1-— —st—iwt) /1 — — St —iw't
y exp( s iw )( exp( s , iw )) (15)
S+ iw s+ iw

2
= Z'L;Voz-(nﬁ + H? cos” 6)%s* exp(—2sz)

x [1 —exp(—ts — itw) — exp(—1ts + itw)

+exp(—2ts) (s + w?) ! (16)
— 'u(z) 2 2 2 M2.2
—W(n,+H cos® 0)°s” exp(—2sz)

x 2 exp(—ts)[cosh(ts) — cos(tw)](s* +w?)~1. (17)
Combining eqs (14) and (17) leads to a relationship between

the spectral density of the magnetic field and the spectral
density of the susceptibility distribution within the slab:

I

W(nﬁ + H?cos? 0 exp(—2sz — ts)

fT(u’ U, Z) =

— oo

=<} W2 -1
X J‘ [cosh(ts) — cos(tw)] <1 + ?>
x f,(u, v, w) dw. (18)

Assuming self-similarity of y(x, y, z) is expressed by

5t 0, W) = (6 4 07 4 W) (19)
WZ —B/2
—es (145 (20)

where ¢, and f are constants, f§ being the 3-D scaling exponent
of the susceptibility distribution. Substitution of eq. (20) into
eq. (18) gives the 2-D spectral density (power spectrum) of the
magnetic field due to a slab of self-similar sources:

2
fr(u,v,2)= cs-ﬁ-]%(nf + H? cos? 0)? exp(—2sz — ts)s~#

© w2\ ~L1-82
X J [cosh(ts) — cos(tw)] <1 + —Sg> dw.
0
(21)
It is common practice to work with the logarithm of the
radially averaged power spectrum (Spector & Grant 1970).

However, instead of the logarithm of the radial average power,

© 1997 RAS, GJI 129, 163-168

Curie-temperature depth estimation 165

it is advisable to take the radial average of the logarithm of
the power (Maus & Dimri 1995), as in

1 n
o L In(fr) do

L[ 1
J‘ In [csﬁz(nﬁ + H? cos? O)Z:l df — 2sz —ts — f3 In(s)

2n Jo
“

v
C

© w2\ —1-8i2
+ln[j [cosh(ts) — cos(tw)] (1 + -S—5> dw} .
0

(22)

The anisotropy of the field is then reflected only in the term
C, which is independent of the wavenumber s. Consequently,
it is not necessary to reduce the spectrum to the pole. This is
particularly welcome at low magnetic latitudes, where a
reduction to the pole is difficult because (n2- H? cos? §)?
becomes small for 6 = 90°.

Limitations of the theory

Eq. (1) is based on the implicit assumption that the magnetic
field as well as its source distribution can be written as a
Fourier integral. This contradicts the self-similarity assumption
in eq.(20). A self-similar random function cannot be repre-
sented as a sum of harmonic waves. The same objection applies
to white noise, which is often used as a model for source
distributions. In this case the problem of a diverging Fourier
integral is avoided by assuming band-limited white noise. In
the same way one can assume that the seif-similarity of a
stochastic process is restricted to a limited band of wave-
numbers (Goff & Jordan 1988; Maus & Dimri 1996).
Nevertheless, eqs (21) and (22) have to be regarded as
approximations rather than exact relations. The quality of the
approximation is likely to vary with the value of §.

RESULTS

Using eq. (22), we investigate the possibilities and limitations
of DTB estimation from the power spectrum of total-field
magnetic-anomaly maps. The model power spectra are
obtained by numerical evaluation of (22) for a particular set
of model parameters. These model power spectra are then
plotted against power spectra of different survey areas. The
constant C in eq. (22) is chosen in such a way that the model
power spectrum fits the power spectrum of the magnetic map
at high wavenumbers.

Survey areas

Our first sample power spectrum is taken from the literature.
It was estimated in the usual way by Whaler (1994) from
aeromagnetic and Magsat data of South Africa downward-
continued to surface level. This power spectrum is displayed
together with the model power spectra of eq.(22) for z=0
and various scaling exponents and slab thicknesses in Figs 1-3.

Since eq. (22) is actually a model for the radial average of
the log power and not for the log of the radially averaged
power, we have estimated our own power spectra from two
large magnetic grids of the former Soviet Union (FSU),
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Figure 1. Power spectra of aeromagnetic and Magsat grids over
South Africa (after Whaler 1994, Fig. 10), together with the model
power spectra of eq.(22) for =3, z=0 and various DTBs. The
half-space model corresponds to an infinite DTB.
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Figure 2. Data of Fig. 1 together with the model power spectra for
B=4

available from the National Geophysical Data Center, Boulder,
Colorado. The grids were compiled from surveys flown at 200
to 500 m topographic altitude. The grid FSU-West extends
from 35° to 78° latitude and 61° to 104° longitude, while the
grid FSU-East has the same latitude but extends from 104° to
147° in longitude. The IGRF of 1965 and a first-order trend
were removed from the data. Their power spectra are shown
in Figs 4 to 7. The graphs in Figs 5 and 6 are plotted on a
log~-log scale to demonstrate the self-similarity of the magnetic
field at high wavenumbers and the departure from self-
similarity at low wavenumbers.

Resolution of the depth to bottom (DTB)

It is not our intention to derive precise DTB estimates of the
survey areas, but to investigate the possibilities and limitations
of DTB estimation in general. From the plots in Figs 1-6 we
draw the following conclusions.

22 T : T
! magsat data  »

20 n agromag data + -
| half-space

18 | DTB =40 km — 4
\ half-space DTB =30 km ----

16 | DTB=20km ---- |

DTB =10km -

In{power)

0 0.005 0.01 0.015 0.02
wavenumber [cycles/km]

Figure 3. Data of Fig. 1 together with the model power spectra for

B=>5.
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Figure 4. Power spectra of the former Soviet Union together with the
model power spectra for f=4 and z=300m. The power spectra of
the magnetic maps are scaled in such a way that the integral over the
2-D power spectrum is equal to the expected value for |T.|? in
nanoteslas.

(1) A noticeable difference between the model power spectra
for different DTBs occurs only at wavelengths above 100 km
(see in particular Fig. 6).

(2) We find a trade-off between increasing susceptibility
scaling exponents S and a decreasing DTB. A scaling exponent
of f =4 gives a realistic DTB of about 20 km for South Africa
(Fig. 2). For Central Asia a scaling exponent of =4 leads to
a DTB of 15 + 5 km (Figs 4 and 5). This may be too shallow.
Choosing a lower scaling exponent of = 3.5 leads to a DTB
estimate of almost 50 km (Fig. 6). Hence, the fact that the
exact value of the scaling exponent § of the crustal susceptibility
distribution is unknown leads to large uncertainties in absolute
DTB estimates.

(3) To resolve the power at long wavelengths with sufficient
precision, large survey areas are required. It is unlikely that a
reliable estimate of the DTB can be obtained from an area
smaller than 1000 km x 1000 km. Consequently, it could be
difficult to estimate the DTB from individual aeromagnetic
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Figure 5. Data of Fig. 4 in log-log scale. At high wavenumbers the
magnetic field is self-similar and its log-log power spectrum is a
straight line. At wavelengths above 50 km (corresponding to wave-
numbers below 0.02 cycles km™*) the power is decreased due to the
limited depth extent of the crustal magnetization. The model indicates
a DTB of about 15 km under the assumption of f=4.

6 r .
FSU-West ——
FSU-East -+---
4L haif-space —
: DTB =50 km -~
DTB =30 km ----
oL ) DIB=20km ---— |
DTB=10km -
[
0 -
g
&
£
2 L
-4 F
-6
0.0001 0.001 0.01

wavenumber [cyc/km]

Figure 6. Power spectra of the FSU in log—log scale as in Fig. 5 but
with the model power spectra for f=3.5. The lower the assumed
scaling exponent of the crustal susceptibility distribution, the greater
the resulting estimate for the DTB.

surveys, typically having dimensions of not more than a few
hundred kilometres. The situation may, however, be more
favourable for young oceanic crust with shallower DTB.

(4) A consequence of the large survey areas required is
that realistic maps of the DTB will have a very low lateral
resolution. It is unlikely that it will be possible to resolve
lateral DTB variations for distances of less than several
hundred kilometres from magnetic data by spectral methods.
Such DTB maps would not shed much light on geological
features with strong lateral temperature variations, such as
subduction zones.

One also has to take into consideration that long-wavelength
anomalies in continental-scale magnetic compilations can be
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Figure 7. Power spectra of the FSU with the model power spectra
for f=1 and z=3.5km. This corresponds to an interpretation using
the white depth models that were utilized in earlier studies to derive
the DTB from the location of a maximum in the power spectrum.
There is no maximum in the FSU power spectra. Maxima are only
found in power spectra that are inaccurately derived from small
survey areas.

severely compromised by survey stitching procedures, non-
uniform data acquisition parameters (especially the elevation)
and by the choice of geomagnetic reference field.

Long-range correlation

We infer from Figs 1-6 that a susceptibility scaling exponent
of f~4 is consistent with the magnetic maps of South Africa
and Central Asia. This is an important result, because it implies
that the scaling law observed by Pilkington & Todoeschuck
(1993) and Pilkington, Todoeschuck & Gregotski (1994) for
susceptibility logs and surveys on a local scale can also be
valid at regional scales of up to thousands of kilometres. In
particular, the crustal magnetization can be correlated over
considerable distances. This contradicts earlier assumptions of
correlation lengths only up to several tens of kilometres
(Jackson 1990, 1994).

‘White depth models

To compare our results with those of earlier studies, Iet us
attempt to interpret the FSU spectra in the conventional way
(Spector & Grant 1970; Connard et al. 1983). The slope of the
power spectrum thus indicates the depth to the top of some
kind of statistical ensemble of prisms. The limited depth extent
of these prisms leads to a maximum in the power spectrum
(Spector & Grant 1970). The wavenumber of this maximum
is directly related to the DTB (Blakely 1995). This inter-
pretation is based on the implicit assumption of a white power
spectrum of the magnetic field at source level. Hence, it
corresponds to f=1 in terms of our model. Fig. 7 shows the
corresponding power spectra. The obvious disagreement with
the observed power spectra, in particular the missing maxima,
is a further indication that white depth models should not be
used to estimate the depth to the bottom of a magnetic layer.
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DISCUSSION

We have derived a spectral model for magnetic maps at a
regional scale. Long-range correlation is accounted for by the
scaling exponent of a virtual susceptibility distribution. The
higher the value of f5, the stronger the long-range correlation.

For =1 our model describes the field due to a weakly
correlated crustal magnetization as assumed by the popular
white noise field models (Hahn, Kind & Mishra 1976). Many
earlier DTB estimates are based on such models. Fig. 1 shows,
however, that realistic values of § are certainly above = 3.
Consequently, the DTB is manifested much less prominently
in magnetic maps than assumed in earlier studies.

Nevertheless, it seems to be possible to compute maps of
the DTB. The main obstacles are the low resolution and the
trade-off between higher scaling exponents  and shallower
DTBs. Resolution of the DTB requires an assumption about
B. Values of f could be larger in the lower than in the upper
crust, indicating a smoother distribution of magnetization.
However, assuming a constant value of f=4 and moving a
window over a very large area would probably lead to a
smooth DTB relief, with a certain degree of uncertainty in the
absolute depth.

Perhaps our most interesting finding is that the self-similarity
of the crustal magnetization extends with a high scaling exponent
of fsp close to 4 up to regional wavelengths. The 3-D scaling
exponent fi; , of the susceptibility distribution is related to the
scaling exponents of lower-dimensional cross-sections of
the same distribution by fsp=pfp+1=pp+2 (Maus &
Dimri 1994). A 5, of close to 4 therefore agrees well with the
results of earlier studies that suggest that the susceptibility
distribution in the crust has scaling exponents of S, p~2
(Pilkington & Todoeschuck 1993) and f,p5 =~ 3 (Pilkington &
Todoeschuck 1995). Furthermore, the corresponding magnetic
field at surface level should have a 2-D scaling exponent of
Y2.p = Pap — 1. Indeed, Gregotski er al. (1991) found scaling
exponents of y,p~3 for local magnetic anomalies in North
America. Significantly lower scaling exponents of ;. , =0.4 and
y2.p & 2 were found for the susceptibility distribution and the
magnetic field in the area of the German Continental Deep
Drilling Project (Maus & Dimri 1995).
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